153 lines
8.3 KiB
Python
153 lines
8.3 KiB
Python
# 数据结构定义:存储订单、企业、供应商数据及算法配置
|
||
class OrderData:
|
||
"""订单数据类:存储物料需求、交货期、成本等信息(贴合生产实际优化)"""
|
||
|
||
def __init__(self):
|
||
self.I = 12 # 物料种类数(12种,分3类:核心/常规/小众)
|
||
# 需求数量:核心物料(1-3)需求量大(1.5-2.5万)、常规物料(4-9)中等(0.7-1.2万)、小众物料(10-12)小(0.3-0.5万)
|
||
self.Q = [22000, 25000, 18000, 11000, 9500, 12000, 8500, 7000, 9000, 4500, 3800, 5000]
|
||
self.Dd = 35 # 交货期微调为35(12种物料需更合理的生产周期)
|
||
# 风险企业采购价:核心物料批量效应价低(28-35)、常规中等(38-45)、小众物料价高(48-52)
|
||
self.P0 = [32, 28, 30, 42, 40, 45, 38, 41, 43, 50, 48, 52]
|
||
# 风险企业运输成本:距离近(20),成本整体偏低(5-8),小众物料因量小单位运输成本略高
|
||
self.T0 = [5, 6, 5, 7, 6, 7, 6, 8, 7, 8, 7, 8]
|
||
self.transport_speed = 12 # 运输速度微调为12(更贴合实际公路运输效率)
|
||
|
||
|
||
class RiskEnterpriseData:
|
||
"""风险企业数据类:存储风险企业的产能、距离等信息(优化产能梯度)"""
|
||
|
||
def __init__(self):
|
||
self.I = 12 # 物料种类数(与订单一致)
|
||
# 单物料最小产能:核心物料产能高(120-150)、常规中等(80-110)、小众低(50-70)
|
||
self.C0_i_min = [140, 150, 130, 100, 90, 110, 85, 80, 95, 65, 55, 70]
|
||
self.C0_total_max = 1100 # 总产能上限(适配12种物料的综合供应,略高于原数值)
|
||
self.distance = 20 # 风险企业优先布局在需求点附近,距离保持低值
|
||
|
||
|
||
class SupplierData:
|
||
"""供应商数据类:7家供应商(专业化分工+数值贴合实际供需)"""
|
||
|
||
def __init__(self, I=12):
|
||
self.I = I # 物料种类数
|
||
self.supplier_count = 7 # 供应商数量(7家,分综合/专业/小众类型)
|
||
self.names = ["S0", "S1", "S2", "S3", "S4", "S5", "S6"] # 供应商命名
|
||
|
||
# 生产权限矩阵(7×12):体现专业化分工
|
||
# S0:全品类(头部综合供应商);S1:核心+部分常规;S2:常规物料;S3:小众+部分常规;S4-S6:专用物料(按物料组分工)
|
||
self.can_produce = [
|
||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # S0:全品类覆盖
|
||
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], # S1:核心(1-3)+常规(4-6)
|
||
[0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], # S2:常规物料(4-9)
|
||
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], # S3:常规(7-9)+小众(10-12)
|
||
[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], # S4:专用组1(1/4/7/10)
|
||
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], # S5:专用组2(2/5/8/11)
|
||
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1] # S6:专用组3(3/6/9/12)
|
||
]
|
||
|
||
# 单物料最小产能(7×12):0=不能生产,产能与物料类型匹配
|
||
self.Cj_i_min = [
|
||
[130, 140, 120, 95, 85, 105, 80, 75, 90, 60, 50, 65], # S0:全品类产能均衡
|
||
[145, 155, 135, 100, 90, 110, 0, 0, 0, 0, 0, 0], # S1:核心物料产能偏高
|
||
[0, 0, 0, 98, 88, 108, 82, 78, 92, 0, 0, 0], # S2:常规物料产能中等
|
||
[0, 0, 0, 0, 0, 0, 83, 79, 93, 62, 52, 67], # S3:小众物料产能偏低
|
||
[135, 0, 0, 96, 0, 0, 81, 0, 0, 61, 0, 0], # S4:专用组1产能适配
|
||
[0, 142, 0, 0, 87, 0, 0, 76, 0, 0, 51, 0], # S5:专用组2产能适配
|
||
[0, 0, 132, 0, 0, 106, 0, 0, 89, 0, 0, 66] # S6:专用组3产能适配
|
||
]
|
||
|
||
# 总产能上限:头部供应商(S0)最高,专业供应商次之,小众供应商最低(符合实际供应链层级)
|
||
self.Cj_total_max = [950, 880, 820, 750, 700, 680, 650]
|
||
|
||
# 最小起订量:核心物料起订量高(2000-3500)、常规中等(800-1800)、小众低(300-600)
|
||
self.MinOrder = [
|
||
[3200, 3500, 2800, 1600, 1200, 1800, 1000, 800, 1400, 500, 350, 550],
|
||
[3300, 3600, 2900, 1700, 1300, 1900, 0, 0, 0, 0, 0, 0],
|
||
[0, 0, 0, 1650, 1250, 1850, 1050, 850, 1450, 0, 0, 0],
|
||
[0, 0, 0, 0, 0, 0, 1100, 900, 1500, 550, 400, 600],
|
||
[3250, 0, 0, 1620, 0, 0, 1020, 0, 0, 520, 0, 0],
|
||
[0, 3550, 0, 0, 1280, 0, 0, 880, 0, 0, 380, 0],
|
||
[0, 0, 2850, 0, 0, 1880, 0, 0, 1480, 0, 0, 580]
|
||
]
|
||
|
||
# 最大供应量:不低于订单需求(避免供应不足),核心物料供应能力强,小众物料供应有限
|
||
self.MaxOrder = [
|
||
[25000, 28000, 21000, 14000, 12000, 15000, 11000, 9000, 12000, 6000, 5000, 7000],
|
||
[26000, 29000, 22000, 15000, 13000, 16000, 0, 0, 0, 0, 0, 0],
|
||
[0, 0, 0, 14500, 12500, 15500, 11500, 9500, 12500, 0, 0, 0],
|
||
[0, 0, 0, 0, 0, 0, 12000, 10000, 13000, 6500, 5500, 7500],
|
||
[25500, 0, 0, 14200, 0, 0, 11200, 0, 0, 6200, 0, 0],
|
||
[0, 28500, 0, 0, 12800, 0, 0, 9800, 0, 0, 5200, 0],
|
||
[0, 0, 21500, 0, 0, 15800, 0, 0, 12800, 0, 0, 7200]
|
||
]
|
||
|
||
# 单位采购价:核心物料因批量大价低(28-35)、常规中等(38-45)、小众高(48-55);专业供应商比综合供应商价略低(专业化优势)
|
||
self.P_ij = [
|
||
[30, 28, 29, 40, 38, 43, 39, 41, 42, 50, 48, 51],
|
||
[29, 27, 28, 39, 37, 42, 0, 0, 0, 0, 0, 0],
|
||
[0, 0, 0, 38, 36, 41, 37, 39, 40, 0, 0, 0],
|
||
[0, 0, 0, 0, 0, 0, 38, 40, 41, 49, 47, 50],
|
||
[31, 0, 0, 40, 0, 0, 39, 0, 0, 51, 0, 0],
|
||
[0, 28, 0, 0, 37, 0, 0, 40, 0, 0, 49, 0],
|
||
[0, 0, 29, 0, 0, 42, 0, 0, 41, 0, 0, 52]
|
||
]
|
||
|
||
# 单位运输成本:与距离正相关(核心优化点),小众物料因运输量小单位成本略高
|
||
self.T_ij = [
|
||
[8, 7, 8, 10, 9, 11, 9, 10, 10, 13, 12, 14],
|
||
[7, 6, 7, 9, 8, 10, 0, 0, 0, 0, 0, 0],
|
||
[0, 0, 0, 11, 10, 12, 10, 11, 11, 0, 0, 0],
|
||
[0, 0, 0, 0, 0, 0, 12, 11, 12, 14, 13, 15],
|
||
[9, 0, 0, 10, 0, 0, 9, 0, 0, 13, 0, 0],
|
||
[0, 8, 0, 0, 9, 0, 0, 10, 0, 0, 12, 0],
|
||
[0, 0, 8, 0, 0, 11, 0, 0, 11, 0, 0, 14]
|
||
]
|
||
|
||
# 供应商距离:梯度分布(40-80),运输成本随距离递增(贴合实际物流成本逻辑)
|
||
self.distance = [50, 40, 60, 70, 55, 45, 65]
|
||
class Config:
|
||
"""算法参数配置类:存储NSGA-II的各类参数"""
|
||
def __init__(self):
|
||
# 种群参数
|
||
self.pop_size = 400 # 种群大小(相对越多越好)
|
||
self.N1_ratio = 0.2 # 优先成本的种群比例
|
||
self.N2_ratio = 0.2 # 优先延期的种群比例
|
||
self.N3_ratio = 0.3 # 强制风险企业的种群比例
|
||
self.N4_ratio = 0.3 # 随机种群比例
|
||
# 遗传操作参数
|
||
self.crossover_prob = 0.8 # 交叉概率
|
||
self.mutation_prob = 0.3 # 变异概率
|
||
self.max_generations = 1000 # 最大进化代数
|
||
# 惩罚系数
|
||
self.delta = 1.3 # 变更惩罚系数
|
||
# 早停参数
|
||
self.early_stop_patience = 100 # 连续多少代无改进则早停
|
||
self.early_stop_threshold = 0.15 # 目标值变化阈值(相对越高,收敛越稳定)
|
||
# 目标函数数量
|
||
self.objective_num = 2 # 双目标(成本+延期)
|
||
self.duplicate_threshold = 0.02 # 和种群数量相乘,重复解保留数量比例(根据种群数量选择)
|
||
self.print_top_n = 10 # 打印前N个最优解
|
||
|
||
class DataStructures:
|
||
"""数据结构工具类:提供评价指标计算等功能"""
|
||
@staticmethod
|
||
def calculate_evaluation_index(objectives, optimal_cost, optimal_tardiness, max_cost, max_tardiness):
|
||
"""
|
||
计算评价指标
|
||
: objectives: 解的目标值 (成本, 延期)
|
||
: optimal_cost: 最优成本值
|
||
: optimal_tardiness: 最优延期值
|
||
: max_cost: 最大成本值
|
||
: max_tardiness: 最大延期值
|
||
:return: 评价指标值
|
||
"""
|
||
cost, tardiness = objectives
|
||
if max_cost - optimal_cost == 0:
|
||
cost_ratio = 0
|
||
else:
|
||
cost_ratio = cost/(max_cost - optimal_cost)
|
||
if max_tardiness - optimal_tardiness == 0:
|
||
tardiness_ratio = 0
|
||
else:
|
||
tardiness_ratio = tardiness/( max_tardiness - optimal_tardiness)
|
||
return cost_ratio + tardiness_ratio |