121 lines
5.4 KiB
Python
121 lines
5.4 KiB
Python
# 数据结构定义:存储订单、企业、供应商数据及算法配置
|
||
class OrderData:
|
||
"""订单数据类:存储物料需求、交货期、成本等信息"""
|
||
def __init__(self):
|
||
self.I = 8 # 物料种类数
|
||
self.Q = [6000, 12000, 22000, 7500, 13500, 16000, 8000, 14000] # 各物料的需求数量
|
||
self.Dd = 40 # 需求交货期(单位:时间)
|
||
self.P0 = [45, 30, 30, 50, 40, 45, 30, 30] # 风险企业的单位采购价
|
||
self.T0 = [5, 8, 6, 7, 9, 4, 6, 7] # 风险企业的单位运输成本
|
||
self.transport_speed = 10 # 运输速度(单位:距离/时间)
|
||
class RiskEnterpriseData:
|
||
"""风险企业数据类:存储风险企业的产能、距离等信息"""
|
||
def __init__(self):
|
||
self.I = 8 # 物料种类数(与订单一致)
|
||
self.C0_i_min = [50, 100, 150, 80, 100, 150, 80, 100] # 单物料的单位时间最小产能
|
||
self.C0_total_max = 18000 # 总产能上限(单位时间)
|
||
self.distance = 30 # 与需求点的距离
|
||
class SupplierData:
|
||
"""供应商数据类:存储各供应商的产能、价格、距离等信息"""
|
||
def __init__(self, I=8):
|
||
self.I = I # 物料种类数
|
||
self.supplier_count = 6 # 供应商数量
|
||
self.names = ["S0", "S1", "S2", "S3", "S4", "S5"] # 供应商名称
|
||
# 能否生产某物料的矩阵(supplier_count × I),1=能生产,0=不能
|
||
self.can_produce = [
|
||
[1, 1, 0, 1, 1, 0, 1, 1],
|
||
[1, 0, 1, 0, 1, 1, 0, 1],
|
||
[0, 1, 0, 1, 0, 0, 1, 0],
|
||
[0, 1, 0, 1, 1, 1, 1, 1],
|
||
[1, 1, 0, 1, 0, 0, 1, 0],
|
||
[0, 0, 1, 0, 1, 0, 1, 1]
|
||
]
|
||
# 单物料单位时间最小产能(supplier_count × I),0表示不能生产该物料
|
||
self.Cj_i_min = [
|
||
[30, 80, 0, 60, 80, 0, 80, 90],
|
||
[35, 0, 120, 0, 90, 110, 0, 110],
|
||
[0, 70, 0, 70, 0, 0, 85, 0],
|
||
[0, 75, 0, 75, 85, 95, 90, 100],
|
||
[25, 60, 0, 80, 0, 0, 90, 0],
|
||
[0, 0, 150, 0, 100, 0, 100, 95]
|
||
]
|
||
# 供应商单位时间的最大总产能(supplier_count)
|
||
self.Cj_total_max = [1100, 950, 850, 1350, 750, 1000]
|
||
# 最小起订量(supplier_count × I)
|
||
self.MinOrder = [
|
||
[300, 800, 0, 600, 800, 0, 800, 900],
|
||
[350, 0, 1200, 0, 900, 1100, 0, 1100],
|
||
[0, 700, 0, 700, 0, 0, 850, 0],
|
||
[0, 750, 0, 750, 850, 950, 900, 1000],
|
||
[250, 600, 0, 800, 0, 0, 900, 0],
|
||
[0, 0, 1500, 0, 1000, 0, 1000, 950]
|
||
]
|
||
# 最大供应量(supplier_count × I)
|
||
self.MaxOrder = [
|
||
[3000, 8000, 0, 6000, 8000, 0, 8000, 9000],
|
||
[3500, 0, 12000, 0, 9000, 11000, 0, 11000],
|
||
[0, 7000, 0, 7000, 0, 0, 8500, 0],
|
||
[0, 7500, 0, 7500, 8500, 9500, 9000, 7000],
|
||
[3000, 6000, 0, 8000, 0, 0, 9000, 0],
|
||
[0, 0, 15000, 0, 8000, 0, 6500, 9500]
|
||
]
|
||
# 单位采购价格(supplier_count × I)
|
||
self.P_ij = [
|
||
[50, 32, 0, 60, 42, 0, 32, 33],
|
||
[55, 0, 33, 0, 44, 48, 0, 36],
|
||
[0, 33, 0, 62, 0, 0, 32, 0],
|
||
[0, 36, 0, 59, 46, 40, 34, 40],
|
||
[53, 37, 0, 58, 0, 0, 39, 0],
|
||
[0, 0, 32, 0, 43, 0, 35, 38]
|
||
]
|
||
# 单位运输成本(supplier_count × I)
|
||
self.T_ij = [
|
||
[8, 8, 0, 5, 15, 0, 8, 11],
|
||
[13, 0, 8, 0, 13, 8, 0, 13],
|
||
[0, 10, 0, 9, 0, 0, 11, 0],
|
||
[0, 6, 0, 8, 11, 7, 9, 10],
|
||
[4, 12, 0, 12, 0, 0, 12, 0],
|
||
[0, 0, 10, 0, 12, 0, 8, 16]
|
||
]
|
||
# 供应商与需求点的距离(supplier_count)
|
||
self.distance = [50, 40, 60, 30, 60, 80, 50, 60]
|
||
class Config:
|
||
"""算法参数配置类:存储NSGA-II的各类参数"""
|
||
def __init__(self):
|
||
# 种群参数
|
||
self.pop_size = 300 # 种群大小
|
||
self.N1_ratio = 0.2 # 优先成本的种群比例
|
||
self.N2_ratio = 0.2 # 优先延期的种群比例
|
||
self.N3_ratio = 0.3 # 强制风险企业的种群比例
|
||
self.N4_ratio = 0.3 # 随机种群比例
|
||
# 遗传操作参数
|
||
self.crossover_prob = 0.8 # 交叉概率
|
||
self.mutation_prob = 0.3 # 变异概率
|
||
self.max_generations = 1000 # 最大进化代数
|
||
# 惩罚系数
|
||
self.delta = 1.3 # 变更惩罚系数
|
||
# 早停参数
|
||
self.early_stop_patience = 30 # 连续多少代无改进则早停
|
||
self.early_stop_threshold = 0.1 # 目标值变化阈值
|
||
# 目标函数数量
|
||
self.objective_num = 2 # 双目标(成本+延期)
|
||
self.duplicate_threshold = 0.01 # 重复解保留数量
|
||
self.print_top_n = 10 # 打印前N个最优解
|
||
|
||
class DataStructures:
|
||
"""数据结构工具类:提供评价指标计算等功能"""
|
||
@staticmethod
|
||
def calculate_evaluation_index(objectives, optimal_cost, optimal_tardiness, max_cost, max_tardiness):
|
||
"""
|
||
计算评价指标
|
||
: objectives: 解的目标值 (成本, 延期)
|
||
: optimal_cost: 最优成本值
|
||
: optimal_tardiness: 最优延期值
|
||
: max_cost: 最大成本值
|
||
: max_tardiness: 最大延期值
|
||
:return: 评价指标值
|
||
"""
|
||
cost, tardiness = objectives
|
||
cost_ratio = cost/(max_cost - optimal_cost)
|
||
tardiness_ratio = tardiness/( max_tardiness - optimal_tardiness)
|
||
return cost_ratio + tardiness_ratio |