# 数据结构定义:存储订单、企业、供应商数据及算法配置 class OrderData: """订单数据类:存储物料需求、交货期、成本等信息""" def __init__(self): self.I = 8 # 物料种类数 self.Q = [6000, 12000, 22000, 7500, 13500, 16000, 8000, 14000] # 各物料的需求数量 self.Dd = 40 # 需求交货期(单位:时间) self.P0 = [45, 30, 30, 50, 40, 45, 30, 30] # 风险企业的单位采购价 self.T0 = [5, 8, 6, 7, 9, 4, 6, 7] # 风险企业的单位运输成本 self.transport_speed = 10 # 运输速度(单位:距离/时间) class RiskEnterpriseData: """风险企业数据类:存储风险企业的产能、距离等信息""" def __init__(self): self.I = 8 # 物料种类数(与订单一致) self.C0_i_min = [50, 100, 150, 80, 100, 150, 80, 100] # 单物料的单位时间最小产能 self.C0_total_max = 1800 # 总产能上限(单位时间) self.distance = 30 # 与需求点的距离 class SupplierData: """供应商数据类:存储各供应商的产能、价格、距离等信息""" def __init__(self, I=8): self.I = I # 物料种类数 self.supplier_count = 6 # 供应商数量 self.names = ["S0", "S1", "S2", "S3", "S4", "S5"] # 供应商名称 # 能否生产某物料的矩阵(supplier_count × I),1=能生产,0=不能 self.can_produce = [ [1, 1, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 1, 1, 1, 1], [1, 1, 0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 1, 1] ] # 单物料单位时间最小产能(supplier_count × I),0表示不能生产该物料 self.Cj_i_min = [ [30, 80, 0, 60, 80, 0, 80, 90], [35, 0, 120, 0, 90, 110, 0, 110], [0, 70, 0, 70, 0, 0, 85, 0], [0, 75, 0, 75, 85, 95, 90, 100], [25, 60, 0, 80, 0, 0, 90, 0], [0, 0, 150, 0, 100, 0, 100, 95] ] # 供应商单位时间的最大总产能(supplier_count) self.Cj_total_max = [1100, 950, 850, 1350, 750, 1000] # 最小起订量(supplier_count × I) self.MinOrder = [ [300, 800, 0, 600, 800, 0, 800, 900], [350, 0, 1200, 0, 900, 1100, 0, 1100], [0, 700, 0, 700, 0, 0, 850, 0], [0, 750, 0, 750, 850, 950, 900, 1000], [250, 600, 0, 800, 0, 0, 900, 0], [0, 0, 1500, 0, 1000, 0, 1000, 950] ] # 最大供应量(supplier_count × I) self.MaxOrder = [ [3000, 8000, 0, 6000, 8000, 0, 8000, 9000], [3500, 0, 12000, 0, 9000, 11000, 0, 11000], [0, 7000, 0, 7000, 0, 0, 8500, 0], [0, 7500, 0, 7500, 8500, 9500, 9000, 7000], [3000, 6000, 0, 8000, 0, 0, 9000, 0], [0, 0, 15000, 0, 8000, 0, 6500, 9500] ] # 单位采购价格(supplier_count × I) self.P_ij = [ [50, 32, 0, 60, 42, 0, 32, 33], [55, 0, 33, 0, 44, 48, 0, 36], [0, 33, 0, 62, 0, 0, 32, 0], [0, 36, 0, 59, 46, 40, 34, 40], [53, 37, 0, 58, 0, 0, 39, 0], [0, 0, 32, 0, 43, 0, 35, 38] ] # 单位运输成本(supplier_count × I) self.T_ij = [ [8, 8, 0, 5, 15, 0, 8, 11], [13, 0, 8, 0, 13, 8, 0, 13], [0, 10, 0, 9, 0, 0, 11, 0], [0, 6, 0, 8, 11, 7, 9, 10], [4, 12, 0, 12, 0, 0, 12, 0], [0, 0, 10, 0, 12, 0, 8, 16] ] # 供应商与需求点的距离(supplier_count) self.distance = [50, 40, 60, 30, 60, 80] class Config: """算法参数配置类:存储NSGA-II的各类参数""" def __init__(self): # 种群参数 self.pop_size = 500 # 种群大小 self.N1_ratio = 0.2 # 优先成本的种群比例 self.N2_ratio = 0.2 # 优先延期的种群比例 self.N3_ratio = 0.3 # 强制风险企业的种群比例 self.N4_ratio = 0.3 # 随机种群比例 # 遗传操作参数 self.crossover_prob = 0.8 # 交叉概率 self.mutation_prob = 0.3 # 变异概率 self.max_generations = 1000 # 最大进化代数 # 惩罚系数 self.delta = 1.3 # 变更惩罚系数 # 早停参数 self.early_stop_patience = 80 # 连续多少代无改进则早停 self.early_stop_threshold = 0.05 # 目标值变化阈值 # 目标函数数量 self.objective_num = 2 # 双目标(成本+延期) self.duplicate_threshold = 0.01 # 重复解保留数量比例 self.print_top_n = 10 # 打印前N个最优解 class DataStructures: """数据结构工具类:提供评价指标计算等功能""" @staticmethod def calculate_evaluation_index(objectives, optimal_cost, optimal_tardiness, max_cost, max_tardiness): """ 计算评价指标 : objectives: 解的目标值 (成本, 延期) : optimal_cost: 最优成本值 : optimal_tardiness: 最优延期值 : max_cost: 最大成本值 : max_tardiness: 最大延期值 :return: 评价指标值 """ cost, tardiness = objectives if max_cost - optimal_cost == 0: cost_ratio = 0 else: cost_ratio = cost/(max_cost - optimal_cost) if max_tardiness - optimal_tardiness == 0: tardiness_ratio = 0 else: tardiness_ratio = tardiness/( max_tardiness - optimal_tardiness) return cost_ratio + tardiness_ratio