import numpy as np from data_structures import OrderData, RiskEnterpriseData, SupplierData, Config from chromosome_utils import ChromosomeUtils class ObjectiveCalculator: """目标函数计算器:变更成本C + 交付延期T""" def __init__(self, order_data: OrderData, risk_data: RiskEnterpriseData, supplier_data: SupplierData, utils: ChromosomeUtils, config: Config): self.order = order_data self.risk = risk_data self.supplier = supplier_data self.utils = utils self.config = config self.split_points = np.cumsum(utils.material_enterprise_count) def calculate_objectives(self, chromosome: np.ndarray) -> tuple[float, float]: """计算双目标值:(变更成本C, 交付延期T)""" enterprise_layer, capacity_layer, quantity_layer = self.utils._split_chromosome(chromosome) # 修复:传入capacity_layer参数 C = self._calculate_change_cost(enterprise_layer, capacity_layer, quantity_layer) T = self._calculate_tardiness(enterprise_layer, capacity_layer, quantity_layer) return C, T # 修复:添加capacity_layer参数 def _calculate_change_cost(self, enterprise_layer: np.ndarray, capacity_layer: np.ndarray, quantity_layer: np.ndarray) -> float: """计算变更成本C = C1 + C2 + C3 + C4""" C1 = 0.0 # 变更惩罚成本 C2 = 0.0 # 采购变更成本 C3 = 0.0 # 运输变更成本 C4 = 0.0 # 提前交付惩罚成本 # 原始成本(全部由风险企业生产) original_purchase_cost = sum(self.order.Q[i] * self.order.P0[i] for i in range(self.order.I)) original_transport_cost = sum(self.order.Q[i] * self.order.T0[i] for i in range(self.order.I)) # 变更后成本 new_purchase_cost = 0.0 new_transport_cost = 0.0 risk_production = np.zeros(self.order.I) # 风险企业生产数量 supplier_production = np.zeros(self.order.I) # 供应商生产数量 start = 0 for i in range(self.order.I): end = self.split_points[i] ents = self.utils.material_optional_enterprises[i] e_segment = enterprise_layer[start:end] q_segment = quantity_layer[start:end] for idx, ent in enumerate(ents): if e_segment[idx] == 1: q = q_segment[idx] if ent == 0: # 风险企业 risk_production[i] += q new_purchase_cost += q * self.order.P0[i] new_transport_cost += q * self.order.T0[i] else: # 供应商 supplier_id = ent - 1 supplier_production[i] += q new_purchase_cost += q * self.supplier.P_ij[supplier_id][i] new_transport_cost += q * self.supplier.T_ij[supplier_id][i] start = end # 计算C1:变更惩罚成本 for i in range(self.order.I): C1 += self.config.delta * supplier_production[i] * (self.order.P0[i] + self.order.T0[i]) # 计算C2:采购变更成本 C2 = new_purchase_cost - original_purchase_cost # 计算C3:运输变更成本 C3 = new_transport_cost - original_transport_cost # 计算C4:提前交付惩罚成本 # 修复:传入capacity_layer参数 actual_delivery_time = self._calculate_actual_delivery_time(enterprise_layer, capacity_layer, quantity_layer) if actual_delivery_time < self.order.Dd: # 计算风险企业和各供应商的交货时间 risk_delivery = [] supplier_deliveries = {} start = 0 for i in range(self.order.I): end = self.split_points[i] ents = self.utils.material_optional_enterprises[i] e_segment = enterprise_layer[start:end] c_segment = capacity_layer[start:end] q_segment = quantity_layer[start:end] for idx, ent in enumerate(ents): if e_segment[idx] == 1: q = q_segment[idx] c = c_segment[idx] if c == 0: production_time = 0 else: production_time = q / c if ent == 0: transport_time = self.risk.distance / self.order.transport_speed risk_delivery.append(production_time + transport_time) else: supplier_id = ent - 1 transport_time = self.supplier.distance[supplier_id] / self.order.transport_speed if supplier_id not in supplier_deliveries: supplier_deliveries[supplier_id] = [] supplier_deliveries[supplier_id].append(production_time + transport_time) start = end D0 = max(risk_delivery) if risk_delivery else 0 Dj_sum = sum(max(times) for times in supplier_deliveries.values()) if supplier_deliveries else 0 C4 = self.config.gamma * ((self.order.Dd - D0) + Dj_sum) return C1 + C2 + C3 + C4 def _calculate_actual_delivery_time(self, enterprise_layer: np.ndarray, capacity_layer: np.ndarray, quantity_layer: np.ndarray) -> float: """计算实际交货期:所有企业中最长的生产+运输时间""" max_time = 0.0 start = 0 for i in range(self.order.I): end = self.split_points[i] ents = self.utils.material_optional_enterprises[i] e_segment = enterprise_layer[start:end] c_segment = capacity_layer[start:end] q_segment = quantity_layer[start:end] for idx, ent in enumerate(ents): if e_segment[idx] == 1: q = q_segment[idx] c = c_segment[idx] if c == 0: production_time = 0 else: production_time = q / c # 计算运输时间 if ent == 0: transport_time = self.risk.distance / self.order.transport_speed else: supplier_id = ent - 1 transport_time = self.supplier.distance[supplier_id] / self.order.transport_speed total_time = production_time + transport_time if total_time > max_time: max_time = total_time start = end return max_time def _calculate_tardiness(self, enterprise_layer: np.ndarray, capacity_layer: np.ndarray, quantity_layer: np.ndarray) -> float: """计算交付延期T = max(0, 实际交货期 - 需求交货期)""" actual_delivery = self._calculate_actual_delivery_time(enterprise_layer, capacity_layer, quantity_layer) return max(0.0, actual_delivery - self.order.Dd)