Compare commits

..

10 Commits

3 changed files with 152 additions and 107 deletions

View File

@ -1,77 +1,115 @@
# 数据结构定义:存储订单、企业、供应商数据及算法配置
class OrderData:
"""订单数据类:存储物料需求、交货期、成本等信息"""
"""订单数据类:存储物料需求、交货期、成本等信息(贴合生产实际优化)"""
def __init__(self):
self.I = 5 # 物料种类数
self.Q = [6000, 12000, 20000, 7500, 13500] # 各物料的需求数量(整数)
self.Dd = 30 # 需求交货期(单位:时间,整数)
self.P0 = [45, 30, 30, 50, 40] # 风险企业的单位采购价(整数)
self.T0 = [5, 8, 6, 7, 9] # 风险企业的单位运输成本(整数)
self.transport_speed = 10 # 运输速度(单位:距离/时间,整数)
self.I = 12 # 物料种类数12种分3类核心/常规/小众)
# 需求数量:核心物料(1-3)需求量大(1.5-2.5万)、常规物料(4-9)中等(0.7-1.2万)、小众物料(10-12)小(0.3-0.5万)
self.Q = [22000, 25000, 18000, 11000, 9500, 12000, 8500, 7000, 9000, 4500, 3800, 5000]
self.Dd = 35 # 交货期微调为3512种物料需更合理的生产周期
# 风险企业采购价:核心物料批量效应价低(28-35)、常规中等(38-45)、小众物料价高(48-52)
self.P0 = [32, 28, 30, 42, 40, 45, 38, 41, 43, 50, 48, 52]
# 风险企业运输成本距离近20成本整体偏低(5-8),小众物料因量小单位运输成本略高
self.T0 = [5, 6, 5, 7, 6, 7, 6, 8, 7, 8, 7, 8]
self.transport_speed = 12 # 运输速度微调为12更贴合实际公路运输效率
class RiskEnterpriseData:
"""风险企业数据类:存储风险企业的产能、距离等信息"""
"""风险企业数据类:存储风险企业的产能、距离等信息(优化产能梯度)"""
def __init__(self):
self.I = 5 # 物料种类数(与订单一致)
self.C0_i_min = [50, 100, 150, 80, 100] # 单物料的单位时间最小产能(整数)
self.C0_total_max = 900 # 总产能上限(单位时间,整数)
self.distance = 20 # 与需求点的距离(整数)
self.I = 12 # 物料种类数(与订单一致)
# 单物料最小产能:核心物料产能高(120-150)、常规中等(80-110)、小众低(50-70)
self.C0_i_min = [140, 150, 130, 100, 90, 110, 85, 80, 95, 65, 55, 70]
self.C0_total_max = 1100 # 总产能上限适配12种物料的综合供应略高于原数值
self.distance = 20 # 风险企业优先布局在需求点附近,距离保持低值
class SupplierData:
"""供应商数据类:存储各供应商的产能、价格、距离等信息"""
def __init__(self, I=5):
"""供应商数据类7家供应商专业化分工+数值贴合实际供需)"""
def __init__(self, I=12):
self.I = I # 物料种类数
self.supplier_count = 4 # 供应商数量
self.names = ["S0", "S1", "S2", "S3"] # 供应商名称
# 能否生产某物料的矩阵supplier_count × I1=能生产0=不能
self.supplier_count = 7 # 供应商数量7家分综合/专业/小众类型)
self.names = ["S0", "S1", "S2", "S3", "S4", "S5", "S6"] # 供应商命名
# 生产权限矩阵7×12体现专业化分工
# S0全品类头部综合供应商S1核心+部分常规S2常规物料S3小众+部分常规S4-S6专用物料按物料组分工
self.can_produce = [
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0],
[0, 0, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # S0全品类覆盖
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], # S1核心(1-3)+常规(4-6)
[0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], # S2常规物料(4-9)
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], # S3常规(7-9)+小众(10-12)
[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], # S4专用组11/4/7/10
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], # S5专用组22/5/8/11
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1] # S6专用组33/6/9/12
]
# 单物料单位时间最小产能supplier_count × I0表示不能生产该物料整数
# 单物料最小产能7×120=不能生产,产能与物料类型匹配
self.Cj_i_min = [
[30, 80, 100, 60, 80],
[60, 0, 180, 0, 120],
[0, 150, 0, 120, 0],
[0, 0, 170, 105, 115]
[130, 140, 120, 95, 85, 105, 80, 75, 90, 60, 50, 65], # S0全品类产能均衡
[145, 155, 135, 100, 90, 110, 0, 0, 0, 0, 0, 0], # S1核心物料产能偏高
[0, 0, 0, 98, 88, 108, 82, 78, 92, 0, 0, 0], # S2常规物料产能中等
[0, 0, 0, 0, 0, 0, 83, 79, 93, 62, 52, 67], # S3小众物料产能偏低
[135, 0, 0, 96, 0, 0, 81, 0, 0, 61, 0, 0], # S4专用组1产能适配
[0, 142, 0, 0, 87, 0, 0, 76, 0, 0, 51, 0], # S5专用组2产能适配
[0, 0, 132, 0, 0, 106, 0, 0, 89, 0, 0, 66] # S6专用组3产能适配
]
# 供应商单位时间的最大总产能supplier_count整数
self.Cj_total_max = [700, 800, 600, 850]
# 最小起订量supplier_count × I整数
# 总产能上限:头部供应商(S0)最高,专业供应商次之,小众供应商最低(符合实际供应链层级)
self.Cj_total_max = [950, 880, 820, 750, 700, 680, 650]
# 最小起订量:核心物料起订量高(2000-3500)、常规中等(800-1800)、小众低(300-600)
self.MinOrder = [
[800, 1500, 3000, 800, 1500],
[1000, 0, 3500, 0, 1800],
[0, 1700, 0, 1000, 0],
[0, 0, 2500, 500, 1000]
[3200, 3500, 2800, 1600, 1200, 1800, 1000, 800, 1400, 500, 350, 550],
[3300, 3600, 2900, 1700, 1300, 1900, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1650, 1250, 1850, 1050, 850, 1450, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1100, 900, 1500, 550, 400, 600],
[3250, 0, 0, 1620, 0, 0, 1020, 0, 0, 520, 0, 0],
[0, 3550, 0, 0, 1280, 0, 0, 880, 0, 0, 380, 0],
[0, 0, 2850, 0, 0, 1880, 0, 0, 1480, 0, 0, 580]
]
# 最大供应量supplier_count × I整数
# 最大供应量:不低于订单需求(避免供应不足),核心物料供应能力强,小众物料供应有限
self.MaxOrder = [
[5000, 10000, 18000, 6500, 11000],
[8000, 0, 25000, 0, 15000],
[0, 8000, 0, 6000, 0],
[0, 0, 20000, 7500, 13500]
[25000, 28000, 21000, 14000, 12000, 15000, 11000, 9000, 12000, 6000, 5000, 7000],
[26000, 29000, 22000, 15000, 13000, 16000, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 14500, 12500, 15500, 11500, 9500, 12500, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 12000, 10000, 13000, 6500, 5500, 7500],
[25500, 0, 0, 14200, 0, 0, 11200, 0, 0, 6200, 0, 0],
[0, 28500, 0, 0, 12800, 0, 0, 9800, 0, 0, 5200, 0],
[0, 0, 21500, 0, 0, 15800, 0, 0, 12800, 0, 0, 7200]
]
# 单位采购价格supplier_count × I整数
# 单位采购价:核心物料因批量大价低(28-35)、常规中等(38-45)、小众高(48-55);专业供应商比综合供应商价略低(专业化优势)
self.P_ij = [
[50, 35, 28, 47, 38],
[43, 0, 28, 0, 36],
[0, 31, 0, 52, 0],
[0, 0, 32, 52, 43]
[30, 28, 29, 40, 38, 43, 39, 41, 42, 50, 48, 51],
[29, 27, 28, 39, 37, 42, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 38, 36, 41, 37, 39, 40, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 38, 40, 41, 49, 47, 50],
[31, 0, 0, 40, 0, 0, 39, 0, 0, 51, 0, 0],
[0, 28, 0, 0, 37, 0, 0, 40, 0, 0, 49, 0],
[0, 0, 29, 0, 0, 42, 0, 0, 41, 0, 0, 52]
]
# 单位运输成本supplier_count × I整数
# 单位运输成本:与距离正相关(核心优化点),小众物料因运输量小单位成本略高
self.T_ij = [
[6, 9, 8, 9, 12],
[4, 0, 5, 0, 15],
[0, 10, 0, 7, 0],
[0, 0, 8, 9, 11]
[8, 7, 8, 10, 9, 11, 9, 10, 10, 13, 12, 14],
[7, 6, 7, 9, 8, 10, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 11, 10, 12, 10, 11, 11, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 12, 11, 12, 14, 13, 15],
[9, 0, 0, 10, 0, 0, 9, 0, 0, 13, 0, 0],
[0, 8, 0, 0, 9, 0, 0, 10, 0, 0, 12, 0],
[0, 0, 8, 0, 0, 11, 0, 0, 11, 0, 0, 14]
]
# 供应商与需求点的距离supplier_count整数
self.distance = [60, 50, 70, 40]
# 供应商距离梯度分布40-80运输成本随距离递增贴合实际物流成本逻辑
self.distance = [50, 40, 60, 70, 55, 45, 65]
class Config:
"""算法参数配置类存储NSGA-II的各类参数"""
def __init__(self):
# 种群参数
self.pop_size = 100 # 种群大小
self.pop_size = 400 # 种群大小(相对越多越好)
self.N1_ratio = 0.2 # 优先成本的种群比例
self.N2_ratio = 0.2 # 优先延期的种群比例
self.N3_ratio = 0.3 # 强制风险企业的种群比例
@ -79,34 +117,37 @@ class Config:
# 遗传操作参数
self.crossover_prob = 0.8 # 交叉概率
self.mutation_prob = 0.3 # 变异概率
self.max_generations = 500 # 最大进化代数
self.max_generations = 1000 # 最大进化代数
# 惩罚系数
self.delta = 1.3 # 变更惩罚系数
# 早停参数
self.early_stop_patience = 20 # 连续多少代无改进则早停
self.early_stop_threshold = 0.15 # 目标值变化阈值
self.early_stop_patience = 100 # 连续多少代无改进则早停
self.early_stop_threshold = 0.15 # 目标值变化阈值(相对越高,收敛越稳定)
# 目标函数数量
self.objective_num = 2 # 双目标(成本+延期)
self.duplicate_threshold = 0.05 # 重复解保留数量
self.duplicate_threshold = 0.02 # 和种群数量相乘,重复解保留数量比例(根据种群数量选择)
self.print_top_n = 10 # 打印前N个最优解
class DataStructures:
"""数据结构工具类:提供评价指标计算等功能"""
@staticmethod
def calculate_evaluation_index(objectives, optimal_cost, optimal_tardiness):
def calculate_evaluation_index(objectives, optimal_cost, optimal_tardiness, max_cost, max_tardiness):
"""
计算评价指标
:param objectives: 解的目标值 (成本, 延期)
:param optimal_cost: 最优成本值
:param optimal_tardiness: 最优延期值
: objectives: 解的目标值 (成本, 延期)
: optimal_cost: 最优成本值
: optimal_tardiness: 最优延期值
: max_cost: 最大成本值
: max_tardiness: 最大延期值
:return: 评价指标值
"""
cost, tardiness = objectives
# 避免除以零成本最优值为0时的保护
if optimal_cost == 0:
cost_ratio = cost
if max_cost - optimal_cost == 0:
cost_ratio = 0
else:
cost_ratio = 2*(cost / optimal_cost)
# 延期处理(+1避免除以零
tardiness_ratio = 8*((tardiness + 1) / (optimal_tardiness + 1))
cost_ratio = cost/(max_cost - optimal_cost)
if max_tardiness - optimal_tardiness == 0:
tardiness_ratio = 0
else:
tardiness_ratio = tardiness/( max_tardiness - optimal_tardiness)
return cost_ratio + tardiness_ratio

82
main.py
View File

@ -8,9 +8,8 @@ from genetic_operators import GeneticOperator
from nsga2 import NSGA2
from visualizer import ResultVisualizer
from data_structures import DataStructures
"""主函数执行NSGA-II算法求解多目标优化问题整数化版本"""
def main():
"""主函数执行NSGA-II算法求解多目标优化问题(整数化版本)"""
"""主函数执行NSGA-II算法求解多目标优化问题"""
try:
# 1. 初始化随机种子(确保结果可复现)
random.seed(42)
@ -18,32 +17,32 @@ def main():
# 2. 初始化数据(订单、风险企业、供应商、算法配置)
print("初始化数据结构...")
order_data = OrderData() # 订单数据(需求、交货期等,整数)
risk_data = RiskEnterpriseData() # 风险企业数据(整数)
supplier_data = SupplierData() # 供应商数据(整数)
risk_data = RiskEnterpriseData() # 风险企业数据
supplier_data = SupplierData() # 供应商数据
config = Config() # 算法参数配置
# 3. 初始化工具类和算法组件
print("初始化算法组件...")
utils = ChromosomeUtils(order_data, risk_data, supplier_data) # 染色体工具(整数化)
calculator = ObjectiveCalculator(order_data, risk_data, supplier_data, utils, config) # 目标函数计算器(整数化)
encoder = Encoder(config, utils) # 种群初始化编码器(整数化)
genetic_op = GeneticOperator(config, utils) # 遗传操作器(整数化)
utils = ChromosomeUtils(order_data, risk_data, supplier_data) # 染色体工具
calculator = ObjectiveCalculator(order_data, risk_data, supplier_data, utils, config) # 目标函数计算器
encoder = Encoder(config, utils) # 种群初始化编码器
genetic_op = GeneticOperator(config, utils) # 遗传操作器
nsga2 = NSGA2(config.pop_size, config.objective_num) # NSGA-II算法实例
visualizer = ResultVisualizer(utils) # 结果可视化工具(适配整数化)
visualizer = ResultVisualizer(utils) # 结果可视化工具
# 4. 初始化种群
print("初始化种群(整数化)...")
print("初始化种群...")
population = encoder.initialize_population()
print(f"初始化种群完成,(种群大小,染色体长度): {population.shape if population.size > 0 else ''}")
# 若种群初始化失败(为空),直接退出
if population.size == 0:
print("错误:种群初始化失败,无法继续进化")
return
# 5. 记录进化过程中的历史数据(整数化)
all_objectives = [] # 所有代的目标函数值(整数)
# 5. 记录进化过程中的历史数据
all_objectives = [] # 所有代的目标函数值
convergence_history = [] # 收敛趋势(每代最优前沿的平均目标值,整数)
best_front = [] # 最终帕累托前沿解(整数)
best_front_objs = [] # 最终帕累托前沿的目标值(整数)
no_improve_count = 0 # 无改进计数器(用于早停)
best_front = [] # 最终帕累托前沿解
best_front_objs = [] # 最终帕累托前沿的目标值
prev_avg_cost = None # 上一代的平均成本
prev_avg_tardiness = None # 上一代的平均延期
no_improve_count = 0 # 无改进计数器
@ -51,16 +50,17 @@ def main():
print(f"开始进化(最大代数:{config.max_generations},早停耐心:{config.early_stop_patience}...")
for generation in range(config.max_generations):
try:
# 计算当前种群的目标函数值(整数)
# 计算当前种群的目标函数值
objectives = [calculator.calculate_objectives(chrom) for chrom in population]
all_objectives.extend(objectives) # 记录所有目标值(整数)
all_objectives.extend(objectives) # 记录所有目标值
# 非支配排序,获取当前代的帕累托前沿
ranks, fronts = nsga2.fast_non_dominated_sort(objectives)
current_front = fronts[0] if fronts else [] # 第0层为最优前沿
current_front_objs = [objectives[i] for i in current_front] if current_front else []
best_front = population[current_front] if current_front else [] # 更新当前最优前沿解(整数)
best_front_objs = current_front_objs # 更新当前最优前沿目标值(整数)
best_front = population[current_front] if current_front else [] # 更新当前最优前沿解
best_front_objs = current_front_objs # 更新当前最优前沿目标值
# 记录收敛趋势(基于最优前沿的平均目标值,整数)
# 记录收敛趋势并判断早停条件
if len(current_front_objs) > 0:
@ -74,10 +74,11 @@ def main():
cost_change = abs(avg_cost - prev_avg_cost)
tardiness_change = abs(avg_tardiness - prev_avg_tardiness)
# 检查是否两个目标的变化都小于阈值
if (cost_change < config.early_stop_threshold and
tardiness_change < config.early_stop_threshold):
# 检查是否两个目标的变化
if (cost_change < config.early_stop_threshold * prev_avg_cost and
tardiness_change < config.early_stop_threshold * prev_avg_tardiness):
no_improve_count += 1
else:
no_improve_count = 0 # 有改进,重置计数器
prev_avg_cost = avg_cost
@ -93,7 +94,7 @@ def main():
# 早停检查(连续多代无改进则停止)
if no_improve_count >= config.early_stop_patience:
print(
f"早停触发:连续{no_improve_count}代两个目标值变化均小于{config.early_stop_threshold},终止于第{generation}")
f"早停触发:连续{no_improve_count}代两个目标值变化均小于{config.early_stop_threshold},终止于第{generation}")
break
# 选择操作(锦标赛选择)
selected = nsga2.selection(population, objectives)
@ -102,10 +103,11 @@ def main():
f"选择后的种群大小({len(selected)})与目标大小({config.pop_size})不符"
# 交叉操作(两点交叉)- 修复索引越界问题
offspring = [] # 子代种群(整数)
offspring = [] # 子代种群
selected_len = len(selected) # selected的长度等于pop_size
i = 0
max_iter = 2 * config.pop_size # 最大迭代次数,避免无限循环
iter_count = 0
while len(offspring) < config.pop_size and iter_count < max_iter:
iter_count += 1
@ -131,6 +133,7 @@ def main():
i += 1 # 处理下一个个体步长改为1避免快速越界
# 若迭代次数用尽仍未生成足够子代,补充随机个体(健壮性处理,整数)
while len(offspring) < config.pop_size:
offspring.append(encoder._generate_random_chromosome()) # 整数化随机染色体
# 变异操作(均匀变异,整数化)
offspring = [
@ -139,8 +142,8 @@ def main():
]
offspring = np.array(offspring[:config.pop_size]).astype(int) # 确保子代大小和整数类型
# 合并父代和子代,准备环境选择
combined = np.vstack([population, offspring]).astype(int) # 合并种群(整数)
# 计算合并种群的目标函数值(整数)
combined = np.vstack([population, offspring]).astype(int) # 合并种群
# 计算合并种群的目标函数值
combined_objs = objectives + [calculator.calculate_objectives(chrom) for chrom in offspring]
# 环境选择保留最优的pop_size个个体
population, objectives = nsga2.environmental_selection(combined, combined_objs)
@ -152,6 +155,7 @@ def main():
# 早停检查(连续多代无改进则停止)
if no_improve_count >= config.early_stop_patience:
print(f"早停触发:连续{no_improve_count}代无改进,终止于第{generation}")
break
# 每50代打印一次进度
if generation % 50 == 0:
@ -160,20 +164,18 @@ def main():
except Exception as e:
print(f"{generation}代进化出错:{str(e)},跳过当前代")
continue
# 7. 结果可视化与输出(整数化)
print("进化完成,处理结果(整数化)...")
# 7. 结果可视化与输出
print("进化完成,处理结果...")
if len(best_front_objs) > 0:
# 1. 过滤重复解
# 1. 过滤重复解(关键改进:基于目标值去重,确保相同目标值只保留一个解)
unique_front = []
unique_front_objs = []
seen = set()
seen_obj = set() # 仅跟踪目标值,确保相同目标值只保留一个
for sol, obj in zip(best_front, best_front_objs):
# 将解和目标值组合为元组用于查重
sol_tuple = tuple(sol.tolist())
obj_tuple = tuple(obj)
if (sol_tuple, obj_tuple) not in seen:
seen.add((sol_tuple, obj_tuple))
obj_tuple = tuple(obj) # 将目标值转为元组用于查重
if obj_tuple not in seen_obj:
seen_obj.add(obj_tuple)
unique_front.append(sol)
unique_front_objs.append(obj)
@ -182,12 +184,14 @@ def main():
# 找出各目标的最优值
optimal_cost = min(obj[0] for obj in unique_front_objs)
optimal_tardiness = min(obj[1] for obj in unique_front_objs)
max_cost = max(obj[0] for obj in unique_front_objs)
max_tardiness = max(obj[1] for obj in unique_front_objs)
# 计算每个解的评价指标
evaluated_solutions = []
for sol, obj in zip(unique_front, unique_front_objs):
index = DataStructures.calculate_evaluation_index(
obj, optimal_cost, optimal_tardiness
obj, optimal_cost, optimal_tardiness, max_cost, max_tardiness
)
evaluated_solutions.append((sol, obj, index))
@ -211,8 +215,8 @@ def main():
top_objectives = []
# 保持原有图表绘制逻辑不变
visualizer.plot_pareto_front(all_objectives, best_front_objs) # 绘制帕累托前沿(整数)
visualizer.plot_convergence(convergence_history) # 绘制收敛趋势(整数)
visualizer.plot_pareto_front(all_objectives, best_front_objs) # 绘制帕累托前沿
visualizer.plot_convergence(convergence_history) # 绘制收敛趋势
# 打印处理后的最优解详情
if top_population:
@ -226,6 +230,6 @@ def main():
import traceback
traceback.print_exc() # 打印详细错误栈
if __name__ == "__main__":
print("程序启动(整数化版本)...")
print("程序启动...")
main()
print("程序结束")

View File

@ -91,7 +91,7 @@ class ResultVisualizer:
q_segment = quantity_layer[start:end].astype(int) # 数量(整数)
demand_q = self.utils.order.Q[i] # 需求数量(整数)
allocated_q = np.sum(q_segment[e_segment == 1]) # 分配的总数量(整数)
print(f"物料 {i} - 需求数量: {demand_q}, 分配总量: {allocated_q}")
print(f"物料 {i+1} - 需求数量: {demand_q}, 分配总量: {allocated_q}")
total_q_check.append(allocated_q == demand_q) # 整数相等检查
print(f" 选择的企业及其分配:")
for idx, ent in enumerate(ents):
@ -104,7 +104,7 @@ class ResultVisualizer:
print("-" * 80)
# 验证数量约束是否满足
if all(total_q_check):
print("✅ 所有物料数量满足需求约束(整数匹配)")
print("✅ 所有物料数量满足需求约束")
else:
print("❌ 部分物料数量未满足需求约束")