修改了目标C的计算逻辑(但仍需要补充)
This commit is contained in:
parent
6d4aa70df6
commit
c21683083d
3
main.py
3
main.py
|
|
@ -1,6 +1,5 @@
|
|||
import random
|
||||
import numpy as np
|
||||
# 导入数据结构和工具类(根据实际项目结构调整导入路径)
|
||||
from data_structures import OrderData, RiskEnterpriseData, SupplierData, Config
|
||||
from chromosome_utils import ChromosomeUtils
|
||||
from objective_calculator import ObjectiveCalculator
|
||||
|
|
@ -36,7 +35,7 @@ def main():
|
|||
# 4. 初始化种群
|
||||
print("初始化种群...")
|
||||
population = encoder.initialize_population()
|
||||
print(f"初始化种群完成,种群大小: {population.shape if population.size > 0 else '空'}")
|
||||
print(f"初始化种群完成,(种群大小,染色体长度): {population.shape if population.size > 0 else '空'}")
|
||||
# 若种群初始化失败(为空),直接退出
|
||||
if population.size == 0:
|
||||
print("错误:种群初始化失败,无法继续进化")
|
||||
|
|
|
|||
|
|
@ -40,26 +40,32 @@ class ObjectiveCalculator:
|
|||
def _calculate_change_cost(self, enterprise_layer: np.ndarray, capacity_layer: np.ndarray,
|
||||
quantity_layer: np.ndarray) -> float:
|
||||
"""
|
||||
计算变更成本 C = C1 + C2 + C3 + C4
|
||||
- C1: 变更惩罚成本(使用供应商替代风险企业的惩罚)
|
||||
- C2: 采购成本差异(变更后 - 原始)
|
||||
- C3: 运输成本差异(变更后 - 原始)
|
||||
- C4: 提前交付惩罚成本
|
||||
计算变更成本 C = C1 + C2 + C3 + C4(按新规则实现)
|
||||
- C1: 变更惩罚成本(含α系数)
|
||||
- C2: 采购成本差异(保持原有逻辑)
|
||||
- C3: 运输成本差异(保持原有逻辑)
|
||||
- C4: 提前交付惩罚成本(新公式)
|
||||
"""
|
||||
C1 = 0.0
|
||||
C2 = 0.0
|
||||
C3 = 0.0
|
||||
C4 = 0.0
|
||||
|
||||
# 原始成本(全部由风险企业生产时的成本)
|
||||
# -------------------------- 基础数据计算(复用+新增)--------------------------
|
||||
# 1. 原始成本(全风险企业生产时的成本)
|
||||
original_purchase_cost = sum(self.order.Q[i] * self.order.P0[i] for i in range(self.order.I))
|
||||
original_transport_cost = sum(self.order.Q[i] * self.order.T0[i] for i in range(self.order.I))
|
||||
original_total_cost = original_purchase_cost + original_transport_cost # 全风险生产总成本(用于C4)
|
||||
|
||||
# 变更后成本(当前解的成本)
|
||||
# 2. 变更后成本(当前解的成本)
|
||||
new_purchase_cost = 0.0
|
||||
new_transport_cost = 0.0
|
||||
risk_production = np.zeros(self.order.I) # 风险企业生产的数量
|
||||
supplier_production = np.zeros(self.order.I) # 供应商生产的数量
|
||||
|
||||
# 3. 关键变量收集(风险企业/供应商的产量、交货时间)
|
||||
risk_production = np.zeros(self.order.I) # 风险企业生产的各物料数量(xi0)
|
||||
supplier_production = np.zeros(self.order.I) # 供应商生产的各物料数量(Qi - xi0)
|
||||
risk_delivery_times = [] # 风险企业的各物料交货时间(Di0 = 生产时间 + 运输时间)
|
||||
supplier_delivery_times = {} # 供应商的各物料交货时间 {供应商ID: [Dij1, Dij2, ...]}
|
||||
|
||||
start = 0
|
||||
for i in range(self.order.I): # 遍历每种物料
|
||||
|
|
@ -67,73 +73,94 @@ class ObjectiveCalculator:
|
|||
ents = self.utils.material_optional_enterprises[i] # 可选企业
|
||||
e_segment = enterprise_layer[start:end] # 企业选择状态
|
||||
q_segment = quantity_layer[start:end] # 数量分配
|
||||
c_segment = capacity_layer[start:end] # 产能(用于计算生产时间)
|
||||
|
||||
for idx, ent in enumerate(ents):
|
||||
if e_segment[idx] == 1: # 仅处理被选中的企业
|
||||
q = q_segment[idx] # 分配的数量
|
||||
c = c_segment[idx] # 产能
|
||||
production_time = q / c if c != 0 else 0 # 生产时间
|
||||
|
||||
if ent == 0: # 风险企业
|
||||
risk_production[i] += q
|
||||
new_purchase_cost += q * self.order.P0[i] # 采购成本
|
||||
new_transport_cost += q * self.order.T0[i] # 运输成本
|
||||
# 风险企业的采购/运输成本
|
||||
new_purchase_cost += q * self.order.P0[i]
|
||||
new_transport_cost += q * self.order.T0[i]
|
||||
# 风险企业的交货时间(Di0)
|
||||
transport_time = self.risk.distance / self.order.transport_speed
|
||||
risk_delivery_times.append(production_time + transport_time)
|
||||
else: # 供应商
|
||||
supplier_id = ent - 1
|
||||
supplier_production[i] += q
|
||||
new_purchase_cost += q * self.supplier.P_ij[supplier_id][i] # 采购成本
|
||||
new_transport_cost += q * self.supplier.T_ij[supplier_id][i] # 运输成本
|
||||
# 供应商的采购/运输成本
|
||||
new_purchase_cost += q * self.supplier.P_ij[supplier_id][i]
|
||||
new_transport_cost += q * self.supplier.T_ij[supplier_id][i]
|
||||
# 供应商的交货时间(Dij)
|
||||
transport_time = self.supplier.distance[supplier_id] / self.order.transport_speed
|
||||
if supplier_id not in supplier_delivery_times:
|
||||
supplier_delivery_times[supplier_id] = []
|
||||
supplier_delivery_times[supplier_id].append(production_time + transport_time)
|
||||
start = end
|
||||
|
||||
# 计算C1:变更惩罚成本(对供应商生产的部分收取惩罚)
|
||||
# -------------------------- C1(变更惩罚成本)计算(新规则)--------------------------
|
||||
# 计算α的两个分子
|
||||
sum_xi0 = np.sum(risk_production) # 所有物料的风险企业总产量
|
||||
sum_Qi = np.sum(self.order.Q) # 所有物料的订单总需求
|
||||
if sum_Qi == 0:
|
||||
ratio_risk_q = 1.0 # 避免除零
|
||||
else:
|
||||
ratio_risk_q = sum_xi0 / sum_Qi
|
||||
|
||||
D_original = self.order.Dd # 原定交货时间(Q1确认:需求交货期)
|
||||
T_actual = self._calculate_actual_delivery_time(enterprise_layer, capacity_layer, quantity_layer) # 实际交货期(Q2确认)
|
||||
if T_actual == 0:
|
||||
ratio_delivery = 1.0 # 避免除零
|
||||
else:
|
||||
ratio_delivery = D_original / T_actual
|
||||
|
||||
# 计算α并应用约束(0, 1],≤0取1)
|
||||
alpha = max(ratio_risk_q, ratio_delivery)
|
||||
alpha = 1.0 if alpha > 1.0 else alpha # 超过1取1
|
||||
alpha = 1.0 if alpha <= 0.0 else alpha # ≤0取1
|
||||
|
||||
# 计算C1(按物料求和)
|
||||
for i in range(self.order.I):
|
||||
# 惩罚系数×供应商生产数量×(风险企业的单位采购+运输成本)
|
||||
C1 += self.config.delta * supplier_production[i] * (self.order.P0[i] + self.order.T0[i])
|
||||
supplier_q = supplier_production[i] # 物料i的供应商产量(Qi - xi0)
|
||||
risk_unit_cost = self.order.P0[i] + self.order.T0[i] # 风险企业单位采运成本
|
||||
C1 += self.config.delta * alpha * supplier_q * risk_unit_cost
|
||||
|
||||
# 计算C2:采购成本差异(变更后 - 原始)
|
||||
C2 = new_purchase_cost - original_purchase_cost
|
||||
# -------------------------- C2、C3(保持原有逻辑)--------------------------
|
||||
C2 = new_purchase_cost - original_purchase_cost # 采购成本差异
|
||||
C3 = new_transport_cost - original_transport_cost # 运输成本差异
|
||||
|
||||
# 计算C3:运输成本差异(变更后 - 原始)
|
||||
C3 = new_transport_cost - original_transport_cost
|
||||
# -------------------------- C4(提前交付惩罚成本)计算(新规则)--------------------------
|
||||
T_actual = self._calculate_actual_delivery_time(enterprise_layer, capacity_layer, quantity_layer)
|
||||
if T_actual <= self.order.Dd: # 不延期时才计算(Q7确认)
|
||||
# 步骤1:计算基础值 = 四舍五入(全风险生产总成本 / 需求交货期)
|
||||
Dd = self.order.Dd
|
||||
if Dd == 0:
|
||||
base_value = 0.0
|
||||
else:
|
||||
base_value = original_total_cost / Dd
|
||||
base_value_rounded = round(base_value) # 四舍五入取整
|
||||
|
||||
# 计算C4:提前交付惩罚成本(若实际交货期早于需求交货期)
|
||||
actual_delivery_time = self._calculate_actual_delivery_time(enterprise_layer, capacity_layer, quantity_layer)
|
||||
if actual_delivery_time < self.order.Dd:
|
||||
# 计算风险企业和供应商的交货时间
|
||||
risk_delivery = [] # 风险企业的各物料交货时间
|
||||
supplier_deliveries = {} # {供应商ID: 各物料交货时间}
|
||||
# 步骤2:计算风险企业提前天数 = max(0, Dd - D0)(D0为风险企业最长交货时间)
|
||||
D0 = max(risk_delivery_times) if risk_delivery_times else 0.0
|
||||
risk_early_days = max(0.0, Dd - D0)
|
||||
|
||||
start = 0
|
||||
for i in range(self.order.I):
|
||||
end = self.split_points[i]
|
||||
ents = self.utils.material_optional_enterprises[i]
|
||||
e_segment = enterprise_layer[start:end]
|
||||
c_segment = capacity_layer[start:end] # 产能(用于计算生产时间)
|
||||
q_segment = quantity_layer[start:end] # 数量
|
||||
# 步骤3:计算供应商最大提前天数 = max(0, Dd - Dj)的最大值(Dj为每个供应商的最长交货时间)
|
||||
max_supplier_early = 0.0
|
||||
for supplier_id, times in supplier_delivery_times.items():
|
||||
Dj = max(times) if times else 0.0
|
||||
supplier_early = max(0.0, Dd - Dj)
|
||||
if supplier_early > max_supplier_early:
|
||||
max_supplier_early = supplier_early
|
||||
|
||||
for idx, ent in enumerate(ents):
|
||||
if e_segment[idx] == 1:
|
||||
q = q_segment[idx]
|
||||
c = c_segment[idx]
|
||||
# 生产时间 = 数量 / 产能(产能为0时按0处理)
|
||||
production_time = q / c if c != 0 else 0
|
||||
|
||||
# 运输时间 = 距离 / 运输速度
|
||||
if ent == 0:
|
||||
transport_time = self.risk.distance / self.order.transport_speed
|
||||
risk_delivery.append(production_time + transport_time)
|
||||
else:
|
||||
supplier_id = ent - 1
|
||||
transport_time = self.supplier.distance[supplier_id] / self.order.transport_speed
|
||||
if supplier_id not in supplier_deliveries:
|
||||
supplier_deliveries[supplier_id] = []
|
||||
supplier_deliveries[supplier_id].append(production_time + transport_time)
|
||||
start = end
|
||||
|
||||
# 风险企业的最大交货时间(取最长)
|
||||
D0 = max(risk_delivery) if risk_delivery else 0
|
||||
# 所有供应商的最大交货时间之和
|
||||
Dj_sum = sum(max(times) for times in supplier_deliveries.values()) if supplier_deliveries else 0
|
||||
# 提前交付惩罚 = 惩罚系数 ×(需求交货期 - 风险企业交货时间 + 供应商总交货时间)
|
||||
C4 = self.config.gamma * ((self.order.Dd - D0) + Dj_sum)
|
||||
# 步骤4:计算C4
|
||||
C4 = base_value_rounded * 0.1 * (risk_early_days + max_supplier_early)
|
||||
C4 = round(C4) # 最终结果四舍五入取整
|
||||
|
||||
# -------------------------- 总变更成本 --------------------------
|
||||
return C1 + C2 + C3 + C4
|
||||
|
||||
def _calculate_actual_delivery_time(self, enterprise_layer: np.ndarray, capacity_layer: np.ndarray,
|
||||
|
|
|
|||
Loading…
Reference in New Issue