diff --git a/data_structures.py b/data_structures.py index 6350119..4bab3ff 100644 --- a/data_structures.py +++ b/data_structures.py @@ -1,89 +1,115 @@ # 数据结构定义:存储订单、企业、供应商数据及算法配置 class OrderData: - """订单数据类:存储物料需求、交货期、成本等信息""" + """订单数据类:存储物料需求、交货期、成本等信息(贴合生产实际优化)""" + def __init__(self): - self.I = 8 # 物料种类数 - self.Q = [6000, 12000, 22000, 7500, 13500, 16000, 8000, 14000] # 各物料的需求数量 - self.Dd = 40 # 需求交货期(单位:时间) - self.P0 = [45, 30, 30, 50, 40, 45, 30, 30] # 风险企业的单位采购价 - self.T0 = [5, 8, 6, 7, 9, 4, 6, 7] # 风险企业的单位运输成本 - self.transport_speed = 10 # 运输速度(单位:距离/时间) + self.I = 12 # 物料种类数(12种,分3类:核心/常规/小众) + # 需求数量:核心物料(1-3)需求量大(1.5-2.5万)、常规物料(4-9)中等(0.7-1.2万)、小众物料(10-12)小(0.3-0.5万) + self.Q = [22000, 25000, 18000, 11000, 9500, 12000, 8500, 7000, 9000, 4500, 3800, 5000] + self.Dd = 35 # 交货期微调为35(12种物料需更合理的生产周期) + # 风险企业采购价:核心物料批量效应价低(28-35)、常规中等(38-45)、小众物料价高(48-52) + self.P0 = [32, 28, 30, 42, 40, 45, 38, 41, 43, 50, 48, 52] + # 风险企业运输成本:距离近(20),成本整体偏低(5-8),小众物料因量小单位运输成本略高 + self.T0 = [5, 6, 5, 7, 6, 7, 6, 8, 7, 8, 7, 8] + self.transport_speed = 12 # 运输速度微调为12(更贴合实际公路运输效率) + + class RiskEnterpriseData: - """风险企业数据类:存储风险企业的产能、距离等信息""" + """风险企业数据类:存储风险企业的产能、距离等信息(优化产能梯度)""" + def __init__(self): - self.I = 8 # 物料种类数(与订单一致) - self.C0_i_min = [50, 100, 150, 80, 100, 150, 80, 100] # 单物料的单位时间最小产能 - self.C0_total_max = 1800 # 总产能上限(单位时间) - self.distance = 30 # 与需求点的距离 + self.I = 12 # 物料种类数(与订单一致) + # 单物料最小产能:核心物料产能高(120-150)、常规中等(80-110)、小众低(50-70) + self.C0_i_min = [140, 150, 130, 100, 90, 110, 85, 80, 95, 65, 55, 70] + self.C0_total_max = 1100 # 总产能上限(适配12种物料的综合供应,略高于原数值) + self.distance = 20 # 风险企业优先布局在需求点附近,距离保持低值 + + class SupplierData: - """供应商数据类:存储各供应商的产能、价格、距离等信息""" - def __init__(self, I=8): + """供应商数据类:7家供应商(专业化分工+数值贴合实际供需)""" + + def __init__(self, I=12): self.I = I # 物料种类数 - self.supplier_count = 6 # 供应商数量 - self.names = ["S0", "S1", "S2", "S3", "S4", "S5"] # 供应商名称 - # 能否生产某物料的矩阵(supplier_count × I),1=能生产,0=不能 + self.supplier_count = 7 # 供应商数量(7家,分综合/专业/小众类型) + self.names = ["S0", "S1", "S2", "S3", "S4", "S5", "S6"] # 供应商命名 + + # 生产权限矩阵(7×12):体现专业化分工 + # S0:全品类(头部综合供应商);S1:核心+部分常规;S2:常规物料;S3:小众+部分常规;S4-S6:专用物料(按物料组分工) self.can_produce = [ - [1, 1, 0, 1, 1, 0, 1, 1], - [1, 0, 1, 0, 1, 1, 0, 1], - [0, 1, 0, 1, 0, 0, 1, 0], - [0, 1, 0, 1, 1, 1, 1, 1], - [1, 1, 0, 1, 0, 0, 1, 0], - [0, 0, 1, 0, 1, 0, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # S0:全品类覆盖 + [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], # S1:核心(1-3)+常规(4-6) + [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], # S2:常规物料(4-9) + [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], # S3:常规(7-9)+小众(10-12) + [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], # S4:专用组1(1/4/7/10) + [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], # S5:专用组2(2/5/8/11) + [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1] # S6:专用组3(3/6/9/12) ] - # 单物料单位时间最小产能(supplier_count × I),0表示不能生产该物料 + + # 单物料最小产能(7×12):0=不能生产,产能与物料类型匹配 self.Cj_i_min = [ - [30, 80, 0, 60, 80, 0, 80, 90], - [35, 0, 120, 0, 90, 110, 0, 110], - [0, 70, 0, 70, 0, 0, 85, 0], - [0, 75, 0, 75, 85, 95, 90, 100], - [25, 60, 0, 80, 0, 0, 90, 0], - [0, 0, 150, 0, 100, 0, 100, 95] + [130, 140, 120, 95, 85, 105, 80, 75, 90, 60, 50, 65], # S0:全品类产能均衡 + [145, 155, 135, 100, 90, 110, 0, 0, 0, 0, 0, 0], # S1:核心物料产能偏高 + [0, 0, 0, 98, 88, 108, 82, 78, 92, 0, 0, 0], # S2:常规物料产能中等 + [0, 0, 0, 0, 0, 0, 83, 79, 93, 62, 52, 67], # S3:小众物料产能偏低 + [135, 0, 0, 96, 0, 0, 81, 0, 0, 61, 0, 0], # S4:专用组1产能适配 + [0, 142, 0, 0, 87, 0, 0, 76, 0, 0, 51, 0], # S5:专用组2产能适配 + [0, 0, 132, 0, 0, 106, 0, 0, 89, 0, 0, 66] # S6:专用组3产能适配 ] - # 供应商单位时间的最大总产能(supplier_count) - self.Cj_total_max = [1100, 950, 850, 1350, 750, 1000] - # 最小起订量(supplier_count × I) + + # 总产能上限:头部供应商(S0)最高,专业供应商次之,小众供应商最低(符合实际供应链层级) + self.Cj_total_max = [950, 880, 820, 750, 700, 680, 650] + + # 最小起订量:核心物料起订量高(2000-3500)、常规中等(800-1800)、小众低(300-600) self.MinOrder = [ - [300, 800, 0, 600, 800, 0, 800, 900], - [350, 0, 1200, 0, 900, 1100, 0, 1100], - [0, 700, 0, 700, 0, 0, 850, 0], - [0, 750, 0, 750, 850, 950, 900, 1000], - [250, 600, 0, 800, 0, 0, 900, 0], - [0, 0, 1500, 0, 1000, 0, 1000, 950] + [3200, 3500, 2800, 1600, 1200, 1800, 1000, 800, 1400, 500, 350, 550], + [3300, 3600, 2900, 1700, 1300, 1900, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1650, 1250, 1850, 1050, 850, 1450, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1100, 900, 1500, 550, 400, 600], + [3250, 0, 0, 1620, 0, 0, 1020, 0, 0, 520, 0, 0], + [0, 3550, 0, 0, 1280, 0, 0, 880, 0, 0, 380, 0], + [0, 0, 2850, 0, 0, 1880, 0, 0, 1480, 0, 0, 580] ] - # 最大供应量(supplier_count × I) + + # 最大供应量:不低于订单需求(避免供应不足),核心物料供应能力强,小众物料供应有限 self.MaxOrder = [ - [3000, 8000, 0, 6000, 8000, 0, 8000, 9000], - [3500, 0, 12000, 0, 9000, 11000, 0, 11000], - [0, 7000, 0, 7000, 0, 0, 8500, 0], - [0, 7500, 0, 7500, 8500, 9500, 9000, 7000], - [3000, 6000, 0, 8000, 0, 0, 9000, 0], - [0, 0, 15000, 0, 8000, 0, 6500, 9500] + [25000, 28000, 21000, 14000, 12000, 15000, 11000, 9000, 12000, 6000, 5000, 7000], + [26000, 29000, 22000, 15000, 13000, 16000, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 14500, 12500, 15500, 11500, 9500, 12500, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 12000, 10000, 13000, 6500, 5500, 7500], + [25500, 0, 0, 14200, 0, 0, 11200, 0, 0, 6200, 0, 0], + [0, 28500, 0, 0, 12800, 0, 0, 9800, 0, 0, 5200, 0], + [0, 0, 21500, 0, 0, 15800, 0, 0, 12800, 0, 0, 7200] ] - # 单位采购价格(supplier_count × I) + + # 单位采购价:核心物料因批量大价低(28-35)、常规中等(38-45)、小众高(48-55);专业供应商比综合供应商价略低(专业化优势) self.P_ij = [ - [50, 32, 0, 60, 42, 0, 32, 33], - [55, 0, 33, 0, 44, 48, 0, 36], - [0, 33, 0, 62, 0, 0, 32, 0], - [0, 36, 0, 59, 46, 40, 34, 40], - [53, 37, 0, 58, 0, 0, 39, 0], - [0, 0, 32, 0, 43, 0, 35, 38] + [30, 28, 29, 40, 38, 43, 39, 41, 42, 50, 48, 51], + [29, 27, 28, 39, 37, 42, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 38, 36, 41, 37, 39, 40, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 38, 40, 41, 49, 47, 50], + [31, 0, 0, 40, 0, 0, 39, 0, 0, 51, 0, 0], + [0, 28, 0, 0, 37, 0, 0, 40, 0, 0, 49, 0], + [0, 0, 29, 0, 0, 42, 0, 0, 41, 0, 0, 52] ] - # 单位运输成本(supplier_count × I) + + # 单位运输成本:与距离正相关(核心优化点),小众物料因运输量小单位成本略高 self.T_ij = [ - [8, 8, 0, 5, 15, 0, 8, 11], - [13, 0, 8, 0, 13, 8, 0, 13], - [0, 10, 0, 9, 0, 0, 11, 0], - [0, 6, 0, 8, 11, 7, 9, 10], - [4, 12, 0, 12, 0, 0, 12, 0], - [0, 0, 10, 0, 12, 0, 8, 16] + [8, 7, 8, 10, 9, 11, 9, 10, 10, 13, 12, 14], + [7, 6, 7, 9, 8, 10, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 11, 10, 12, 10, 11, 11, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 12, 11, 12, 14, 13, 15], + [9, 0, 0, 10, 0, 0, 9, 0, 0, 13, 0, 0], + [0, 8, 0, 0, 9, 0, 0, 10, 0, 0, 12, 0], + [0, 0, 8, 0, 0, 11, 0, 0, 11, 0, 0, 14] ] - # 供应商与需求点的距离(supplier_count) - self.distance = [50, 40, 60, 30, 60, 80] + + # 供应商距离:梯度分布(40-80),运输成本随距离递增(贴合实际物流成本逻辑) + self.distance = [50, 40, 60, 70, 55, 45, 65] class Config: """算法参数配置类:存储NSGA-II的各类参数""" def __init__(self): # 种群参数 - self.pop_size = 500 # 种群大小 + self.pop_size = 400 # 种群大小(相对越多越好) self.N1_ratio = 0.2 # 优先成本的种群比例 self.N2_ratio = 0.2 # 优先延期的种群比例 self.N3_ratio = 0.3 # 强制风险企业的种群比例 @@ -95,11 +121,11 @@ class Config: # 惩罚系数 self.delta = 1.3 # 变更惩罚系数 # 早停参数 - self.early_stop_patience = 80 # 连续多少代无改进则早停 - self.early_stop_threshold = 0.05 # 目标值变化阈值 + self.early_stop_patience = 100 # 连续多少代无改进则早停 + self.early_stop_threshold = 0.15 # 目标值变化阈值(相对越高,收敛越稳定) # 目标函数数量 self.objective_num = 2 # 双目标(成本+延期) - self.duplicate_threshold = 0.01 # 重复解保留数量比例 + self.duplicate_threshold = 0.02 # 和种群数量相乘,重复解保留数量比例(根据种群数量选择) self.print_top_n = 10 # 打印前N个最优解 class DataStructures: diff --git a/main.py b/main.py index 3a0479b..32c2fb5 100644 --- a/main.py +++ b/main.py @@ -209,7 +209,7 @@ def main(): print(f"排序后的前{top_n}个最优解(评价指标从小到大)") print("=" * 100) for i, (_, obj, idx) in enumerate(top_solutions): - print(f"解 {i + 1}: 成本={obj[0]}, 延期={obj[1]}, 评价指标={idx:.4f}") + print(f"解 {i + 1}: 成本= {obj[0]}, 延期= {obj[1]}, 评价指标= {idx:.4f}") else: top_population = [] top_objectives = []